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Abstract. We study the nature of the instability of the homogeneous steady states of the subcritical real
Ginzburg-Landau equation in the presence of group velocity. The shift of the absolute instability threshold
of the trivial steady state, induced by the destabilizing cubic nonlinearities, is confirmed by the numerical
analysis of the evolution of its perturbations. It is also shown that the dynamics of these perturbations
is such that finite size effects may suppress the transition from convective to absolute instability. Finally,
we analyze the instability of the subcritical middle branch of steady states, and show, analytically and
numerically, that this branch may be convectively unstable for sufficiently high values of the group velocity.

PACS. 47.20.Ky Nonlinearity (including bifurcation theory) – 47.54.+r Pattern selection; pattern
formation – 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion

1 Introduction

Several physico-chemical systems driven out of equilib-
rium present stationary instabilities of the Turing type,
or oscillatory instabilities corresponding to Hopf bifur-
cations. Such instabilities lead to the formation of var-
ious kinds of spatio-temporal patterns [1]. Well known
examples are: Rayleigh-Bénard instabilities in Newtonian
fluids, binary mixtures, or viscoelastic solutions [2,3],
electrohydrodynamic instabilities in nematic liquid crys-
tals [4], Turing instabilities in nonlinear chemical
systems [5], convective instabilities in Taylor-Couette
devices [6], etc. Close to such instabilities, the dynam-
ics of the system may usually be reduced to amplitude
equations of the Ginzburg-Landau type, which describe
the evolution of the patterns that may appear beyond the
bifurcation point [7].

According to the system under consideration, and
to the nature of the instability, these Ginzburg-Landau
equations may contain mean flow terms induced by
group velocities. In this case, pattern formation crucially
depends on the convective or absolute nature of the
instability. Let us recall that, when the reference state is
convectively unstable, localized perturbations are driven
by the mean flow in such a way that they grow in the
moving reference frame, but decay at any fixed location.
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On the contrary, in the absolute instability regime, lo-
calized perturbations grow at any fixed location [8]. The
behavior of the system is thus qualitatively very different
in both regimes. In the convectively unstable regime,
a deterministic system cannot develop the expected
patterns, except in particular experimental set-ups, while
in a stochastic system, noise is spatially amplified and
gives rise to noise-sustained structures [9–11]. On the
contrary, in the absolutely unstable regime, patterns
are intrinsically sustained by the deterministic dynam-
ics, which provides the relevant selection and stability
criteria [12,13]. Hence, the concepts of convective and
absolute instability are essential to understand the behav-
ior of nonlinear wave patterns and their stability [9,14].

The nature of the instability of the trivial steady
state has been studied, either numerically, analytically and
experimentally: In the case of supercritical bifurcations,
linear criteria are appropriate to determine the absolute
instability threshold, and to analyze the transition from
convective to absolute instability [9–11,15–19]. However,
in the case of subcritical bifurcations, the nonlinearities
are destabilizing, which leads to the failure of linear insta-
bility criteria. In a qualitative analysis based on the po-
tential character of the real subcritical Ginzburg-Landau
equation, Chomaz [20] argued that the transition be-
tween convective and absolute instability of the trivial
steady state should occur at the point where a front be-
tween the rest state and the nontrivial steady state is
stationary in a frame moving with the group velocity.
This defines the nonlinear convective-absolute instability
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threshold, above which nonlinear global modes are in-
trinsically sustained by the dynamics, as discussed by
Couairon and Chomaz [21]. This argument relies on the
existence of a unique front between the basic and the bi-
furcating states, as it is the case in the subcritical domain
where both basic and bifurcating states are linearly stable.
In the supercritical domain, where the basic state is lin-
early unstable, or in the complex Ginzburg-Landau equa-
tion, this front is not unique any more, and, as commented
by van Hecke et al. [22], one has to know which nonlin-
ear front solution is selected, to determine the nonlinear
stability properties of the basic state.

Within this context, our aim in this paper is to con-
tribute to the study of this problem addressing some
aspects of it that so far have not been considered.
Additionally we study stochastic effects. A first aspect
concerns finite size effects and their influence on the tran-
sition from convective to absolute instability for the trivial
steady state. Indeed, our numerical analysis of the evolu-
tion of perturbations of this state shows that it consists
of two stages. The first one is devoted to the building of
a front between this state and the bifurcating one. It is
during the second stage that this front moves outwards
or inwards according to the convective or absolute nature
of the instability. We will show that, although the abso-
lute instability threshold may effectively be shifted, due
to nonlinear effects, in agreement with [20], the first step
of the evolution is sensitive to the size of the system, and
this may affect the practical determination of the absolute
instability threshold, and even suppress it.

A second aspect is the effect of the group velocity on
the unstable subcritical branch. In the subcritical domain,
there is a middle branch of steady states, between the
trivial and the bifurcating ones. In fact, the nature of the
instability of this branch in the presence of a group ve-
locity has not been considered so far. In the absence of
group velocity, this branch is absolutely unstable. How-
ever, the nature of the instability may be modified in sys-
tems with group velocity or mean flow effects. We will
effectively show, analytically and numerically, that this
unstable subcritical branch may be convectively unstable,
totally or partly, according to the mean flow intensity. Ef-
fectively, in deterministic systems, unstable states on this
branch do not necessarily decay in the presence of group
velocity, while they may remain long lived in stochastic
systems. This fact may be of practical importance, since
it provides an alternative way to stabilize the subcritical
middle branch, which is qualitatively different from the
one proposed by Thual and Fauve [23]. It could, further-
more, provide the last building block needed for the under-
standing of pattern formation in binary fluid convection,
as suggested in [1].

In Section 2, we review the dynamical system. In
Section 3, we discuss the nature of the instability of the
trivial steady state, and present the results of a numerical
analysis of the problem. In Section 4, we show, analyti-
cally and numerically, that the subcritical middle branch
of steady states may be convectively unstable, and may

Fig. 1. Bifurcation diagram for the real subcritical scalar
Ginzburg-Landau equation.

thus be stabilized by mean flow effects in deterministic
systems. Finally, conclusions are drawn in Section 5.

2 The subcritical scalar Ginzburg-Landau
equation
For the sake of simplicity, we will consider systems de-
scribed by a scalar order parameterlike variable, and
where the dynamics is given by the real fifth-order
Ginzburg-Landau equation, which may be written, in one-
dimensional geometries, as [1,24]:

∂tA+ c∂xA = εA+ ∂2
xA+ vA3 −A5 +

√
ξχ(x, t). (1)

For future reference we have added a stochastic
term χ(x, t) to the equation. This models a Gaus-
sian white noise of zero mean and variance given by
〈χ(x, t)χ(x′, t′)〉 = 2δ(x− x′)δ(t− t′). In the remainder of
this section we consider the deterministic situation with
ξ = 0.

Bifurcating uniform steady states A(x, t) = R of this
equation are well known:

R2
± =

1
2

(v ±
√
v2 + 4ε). (2)

The linear evolution of the perturbations ρ± = A−R±
around these states is then given by:

∂tρ± + c∂xρ± = ∓2R2
±
√
v2 + 4ερ± + ∂2

xρ±. (3)

Hence, in the absence of group velocity, the upper branch
R+ exists and is stable for − v2

4 < ε, while the middle
branch R− exists and is unstable for − v2

4 < ε < 0 (cf.
Fig. 1).

This picture is, of course, known to change in the pres-
ence of a finite group velocity c. Let us first recall the
linear and nonlinear criteria for convective and absolute
instability for the trivial steady state A = 0.

3 Linear and nonlinear instability of the trivial
steady state

3.1 Analytical results

The linear evolution around the trivial steady state A = 0
is given by

∂tρ0 + c∂xρ0 = ερ0 + ∂2
xρ0 (4)
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Fig. 2. Representation of the linear and nonlinear front ve-
locities (c∗ and c†) in the (cf/v, ε/v2) plane. The solid line
represents the selected front velocity. The dashed lines repre-
sent c∗ for ε < 3v2/4 and c† for ε > 3v2/4.

and the corresponding dispersion relation is

ω = ε− cκ+ κ2 (5)

with κ = k′+ ik′′. The usual linear instability criterion [8]

<dω
dκ

= =dω
dκ

= 0 (6)

and <(ω(κ)) = 0 gives that the trivial steady state is
convectively unstable for 0 < ε < c2/4, and absolutely
unstable for ε > c2/4.

However, since the nonlinearities of the dynamics are
destabilizing, the linear terms may possibly not govern the
growth of perturbations of the steady state. Hence, a reli-
able stability analysis has to include nonlinear terms. As
discussed by Chomaz and Couairon [20,21], the nonlinear
stability analysis of the trivial steady state relies on its
response to perturbations of finite extent and amplitude.
Hence, in the case of equation (1), without group velocity
(c = 0), it is sufficient to consider a front solution joining
the 0 state at x→ −∞ to the R+ state at x→ +∞.

In the case of the dynamics given by equation (1), the
front velocity, cf may be calculated exactly [25], and is
found to be (cf. Fig. 2)

cf = c† =
1√
3

(−v + 2
√
v2 + 4ε)

(
for − v2

4
< ε <

3v2

4

)
cf = c∗ = 2

√
ε

(
for

3v2

4
< ε

)
. (7)

Note that c∗ is the linear marginal velocity.
If the front velocity is negative, which is the case for

ε < −3v2/16, an isolated droplet of the R+ state embed-
ded into the 0 state shrinks, and the 0 state is stable.
On the contrary, if cf is positive, which is the case for
ε > −3v2/16, R+ droplets grow, and the 0 state is non-
linearly unstable. The value ε = −3v2/16 corresponds to
the Maxwell construction of phase transitions in which the
trivial and upper branch have equal stability.

When c 6= 0 and v = 1, Chomaz [20] showed that, in
the unstable domain (ε > −3v2/16), the instability is non-
linearly convective (NLC) when cf < c, since, in this case,

although expanding, a R+ droplet is finally advected out
of the system. On the contrary, when cf > c, the insta-
bility is absolute (NLA), since, in this case, R+ droplets
expand in such a way that they finally invade the system.

Hence, on generalizing this argument to arbitrary val-
ued of v, one obtains imposing cf = c in equation (7)
that the transition from convective to absolute instability
occurs at:

εa =
3
16

(c2 +
2√
3
vc− v2) (for c <

√
3v)

=
1
4
c2 (for c >

√
3v). (8)

From this result, it appears clearly that, when group ve-
locity effects dominate over nonlinear ones (c >

√
3v),

the absolute instability threshold remains the linear one.
However, when nonlinearities dominate (v > c/

√
3), the

absolute instability threshold decreases, but remains in
the ε > 0 domain, when v < c

√
3. It only becomes neg-

ative when v > c
√

3. This last case is the one originally
considered in [20].

3.2 Numerical analysis

The above results have been checked through the numer-
ical integration of the equation (1). We will present here
some of the data obtained for systems being initially in
the trivial steady state, and compare them to the predic-
tions obtained from the analytical analysis outlined in the
preceding section. To observe a convective instability we
consider a semi-infinite system with one of the boundaries
anchored to the unstable state A(x = 0) = 0. Experi-
mentally, this boundary condition can be achieved using
a negative value for the control parameter ε for x < 0.

The numerical integrations have been performed using
a finite difference method [19] with a spatial step of δx =
0.05 and time step δt = 0.001, except where otherwise
noted. As explained before, the boundary conditions for a
system of size L were taken as follows: A = 0 at x = 0 for
all times and ∂xA = 0 at x = L.

We only discuss here situations where the nonlinear-
ities dominate over mean flow effects, thus where linear
instability criterion fails.

(1) A first case corresponds to c = v = 1. In this
case, the transition from convective to absolute instability
should occur at εa =

√
3/8 ' 0.21. This is illustrated by

the numerical results presented in Figure 3. In Figures 3a
and b, we show the deterministic evolution of the field
A from random initial conditions around A = 0 and for
ε = 0.18. The data confirm the convective nature of the
instability. Effectively, we see, in a first stage, the building
of a front between the trivial state and the bifurcating one,
and, in a second stage, this front is advected out of the
system. On the contrary, for ε = 0.23, the instability is
absolute, as shown in Figures 3c and d, where the front
moves in the opposite direction, and the bifurcating state
invades the system.

The difference between subcritical and supercritical
behavior is enlightened in Figures 3e and f, where the field
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a) b)

c)

d)

e) f)

Fig. 3. Deterministic evolution of perturbations of the trivial steady state. The column on the left shows the spatio-temporal
evolution of the field A and the column on the right the value of the field at different times. The initial condition for each grid
point is Ai(t = 0) = f |ηi|, where η is a Gaussian random number of zero mean and variance 1 and f = 10−4. In (a) and (b)
we consider the subcritical case in a convectively unstable regime, with ε = 0.18, v = 1, c = 1. In (c) and (d) we consider the
subcritical case in an absolutely unstable regime, with ε = 0.23, v = 1, c = 1. In (e) and (f) we consider the supercritical case,
with ε = 0.23, v = −1, c = 1. Dashed lines in (b) and (f) correspond to early times when the front is being formed and it
effectively moves to the left. Continuous lines show the front moving to the right in (b) and (f) and moving to the left in (d).

evolution has been computed with the same parameters as
in Figures 3c and d, except that v has been changed from
+1 to −1 to gain supercriticality. In this case, the insta-
bility should be convective, since the absolute threshold
is ε = 0.25, and the results are in agreement with this
prediction.

The effect of noise in the regime of convective insta-
bility is presented in Figure 4. The field dynamics has
been computed for the same values of the parameters
as in Figure 3a, but in the presence of noise of different
intensities. The noise intensity has been fixed at ξ = 10−6

in Figure 4a and at ξ = 10−14 in Figure 4b. In both
cases we observe noise sustained structures: Noise is able
to sustain finite field amplitudes (positive or negative,
according to the +,− symmetry of the system). Weaker
noise induces larger healing length for the pattern. Hence,
in the stochastic case, pattern formation is sensitive to
system size, since the latter has to be larger than the
healing length, for the pattern to be able to develop.

(2) In a second case, we chose c = 0.5, v = 1.5, and this
corresponds to the situation presented by Chomaz [20],
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a)

b)

Fig. 4. Spatio-temporal evolution of the field A with noise
in a convectively unstable regime for ε = 0.18, v = 1, c = 1.
The initial condition is A(x, t = 0) = 0. (a) Noise intensity
ξ = 10−6, (b) noise intensity ξ = 10−14.

where nonlinear effects dominate (v > c
√

3) and where the
transition from convective to absolute instability occurs in
the subcritical domain since εa ' −0.21. For εa < ε, the
instability is absolute, but the dynamics is qualitatively
different if ε is positive or negative. When ε > 0, both
linear and cubic terms are destabilizing, and the building
and propagation of fronts between trivial and bifurcating
states is much faster than for ε < 0, when the linear term
is stabilizing, and the cubic one is destabilizing. When
the dynamics becomes very slow the time and system size
needed to see the formation of a front from an initial per-
turbation become very large, so that even in the absolutely
unstable regime one might not observe the decay of the
state A = 0 in finite times for a finite system. This effect is
illustrated in Figure 5 which corresponds to the absolutely
unstable regime. Note the significant increase of the times
scales in comparison with Figures 3 and 4, despite the fact
that the perturbation of the zero state at the initial time is
much large (see the figure caption). We note that for ε < 0
the evolution would still be slower. We first observe the
formation of the front (initially moving to the right) and
much later, when it reaches the upper branch, invading
the whole system. Hence, when the characteristic length
needed for the building of the front is larger than the sys-
tem size, the instability is effectively convective, although
the system should be in the absolute instability regime

Fig. 5. Spatio-temporal evolution of the field A without noise
in an absolutely unstable regime with ε = 0, v = 1.5, c = 0.5.
The initial condition is as in Figure 3 but with f = 10−2. In
this case we have taken δx = 1, δt = 0.2.

(in the sense of semi-infinite geometries). For the parame-
ters chosen in this example and for a length L < 2000 one
does not observe the decay of the state A = 0.

It is noteworthy that the observed finite size effects
confirm and complement the analysis made by Chomaz
and Couairon [26] of fully nonlinear solutions of Ginzburg-
Landau equations in finite domains. In case (1), for ε =
0.23, nonlinear global (NLG) modes exist, even in finite
domains. However, since the basic state, A = 0 is linearly
absolutely stable, NLG modes only develop if the initial
condition is sufficiently large for the transients to reach an
order one amplitude in the finite domain. Since the am-
plification factor increases exponentially with L, the mini-
mum amplitude of initial perturbations able to trigger the
NLG mode decreases exponentially with L [26]. As a re-
sult, the development of NLG modes is almost insensitive,
in most practical situations, to system size.

On the contrary, in case (2), the basic state is linearly
stable, absolutely and convectively, and the minimum am-
plitude of initial perturbations able to trigger NLG modes
in finite boxes decreases linearly with L. It is why, in the
conditions of our numerical analysis, no global mode is
obtained for L < 2000.

4 Stability analysis of the bifurcating states

4.1 Analytical results

The linear evolution around the upper branch steady
states R+ and middle branch steady states R− is given
by equation (3). The upper states R+ are linearly stable
for ε > − v2

4 .
On the other hand, the usual linear instability cri-

terion shows that the R− steady states are convectively
unstable for 8R2

−
√
v2 + 4ε < c2, and absolutely unstable

for 8R2
−
√
v2 + 4ε > c2. In other words, these states are
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Fig. 6. Domains of linear convective and absolute instability
of the middle branch uniform steady state in the ((c/v)2, ε/v2)
plane. The linear stability analysis is not valid in the hatched
domain where the nonlinearities are destabilizing.

absolutely unstable in the range

− 1
8

(v2 +
c2

2
+ v
√
v2 − c2) < ε <

− 1
8

(v2 +
c2

2
− v
√
v2 − c2) (9)

and convectively unstable in the windows defined by

−v
2

4
< ε < −1

8
(v2 +

c2

2
+ v
√
v2 − c2) (10)

and

−1
8

(v2 +
c2

2
− v
√
v2 − c2) < ε < 0. (11)

Hence, when v2 < c2, these steady states are always
linearly convectively unstable. Still, when v2 > c2, there
is a range of linear absolute instability in the middle of
their domain of existence, and a range of linear convective
instability close to the points where these states disappear.
This is shown in Figure 6.

Nevertheless the linear stability criteria may fail in the
presence of destabilizing nonlinearities. This is not only
the case for the evolution of the perturbations of the trivial
steady state since the bifurcation is subcritical, but it may
also be the case for the perturbations around the middle
steady state branch, whose evolution is given by

∂tρ− + c∂xρ− = +2R2
−
√
v2 + 4ερ− + ∂2

xρ−

− R−(2v − 5
√
v2 + 4ε)ρ2

− − (4v − 5
√
v2 + 4ε)ρ3

−

− 5R−ρ4
− − ρ5

−. (12)

The quadratic nonlinearity is destabilizing for ε < εL =
−0.21 v2. In such cases, one has to perform a nonlinear
analysis of the dynamics to determine the convective or
absolute nature of the instability.

In the regime where the nonlinearities of the evolution
equation (12) are stabilizing, i.e. for εL = −0.21 v2 < ε< 0,

the results of the linear analysis may be assumed to be
valid. Hence, we may safely rely on these results above the
metastability point, i.e. for εM = −3/16v2 < ε < 0. Below
the metastability point, i.e. for −0.25v2 < ε < −3/16v2,
one has to perform a nonlinear analysis, which, in this
case, relies on the evolution of fronts between middle
branch states and the trivial steady state. We do not per-
form this analysis here since it would only affect quanti-
tatively but not qualitatively the results presented above.

4.2 Dynamics of the subcritical unstable branch

We have numerically confirmed the convective nature of
the instability of the subcritical middle branch. The nu-
merical integration has been performed as indicated in
Section 3.2. Also, as indicated in that subsection, to ob-
serve a convective instability we consider a semi-infinite
system with one of the boundaries anchored to the unsta-
ble state. Here we have to take A(x = 0) = R− corre-
sponding to the field amplitude of the subcritical middle
branch. Experimentally, this boundary condition can not
be achieved as easily as before because there is no value
of the control parameter ε for which A(x) = R− is an ho-
mogeneous steady stable state. However depending on the
system it can be imposed in different ways. In an optical
system, for example, the left boundary condition could be
achieved injecting an external field at x = 0 with the ap-
propriate amplitude. Finally, as in Section 3.2, the right
boundary condition is taken as ∂xA = 0 at x = L

We computed the evolution from an initial steady state
withR2

− = 0.1 on the middle branch, which corresponds to
v = 1 and ε = −0.09. We then study the system dynamics
for different values of the group velocity c. According to
the previous discussion, for

(1) c < 0.8, the state R− should be absolutely unstable;

(2) c > 0.8, the state R− should be convectively unstable.

In Figure 7a, we present, for c = 1, the results obtained
for the deterministic evolution of an initial perturbation of
the state R−. They show that the instability is effectively
convective. On lowering the group velocity from c = 1 to
c = 0.55, the nature of the instability changes from con-
vective to absolute, as expected, and shown in Figure 7b.
These results confirm that the middle branch, which is al-
ways unstable for c = 0, may be stabilized by mean flow
effects in deterministic systems, in the sense that there
is a range of parameters in which it is only convectively
unstable.

The effect of noise in the convectively unstable regime
of the trivial state was to sustain a structure continuously
excited by noise. In the case of the middle branch. R−,
and when this is convectively unstable, noise forces the
system to relax randomly to either of the two coexisting
stable branches, as shown in Figure 8. Still, if noise is weak
in comparison with the strength needed to see its effect in
a finite system, one would observe the middle branch as
effectively stable.
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a)

b)

Fig. 7. Deterministic evolution of a perturbation around the
middle branch state R− in a convectively unstable regime for
ε = −0.09, v = 1. The initial condition for each grid point is
Ai(t = 0) = R−+f |ηi|, where η is a Gaussian random number
of zero mean and variance 1 and R− =

√
0.1. (a) Convectively

unstable regime with c = 1 and f = 10−2. (b) Absolutely
unstable regime with c = 0.55 and f = 10−6.

Fig. 8. Spatio-temporal evolution of the field A with noise
in a convectively unstable regime for the middle branch for
ε = −0.09, v = 1, c = 1 and ξ = 10−6. The initial condition is
A(x, 0) =

√
0.1.

5 Conclusions

In this paper, we considered systems described by the
subcritical real Ginzburg-Landau equation, and analyzed
some problems related to the effect of group velocities on
the stability of its steady states. In the case of the trivial
steady state, it is known that the transition between con-
vective and absolute linear instability regimes is shifted
by the effect of destabilizing nonlinearities, and the cor-
responding nonlinear absolute instability threshold may
easily be computed for semi-infinite systems [20,21]. Our
numerical study of the evolution of perturbations from the
trivial steady state in finite systems shows that, in a first
step, a front is built between this state and the bifurcat-
ing one, which corresponds to the upper branch of steady
states. Then, according to the intensity of the group ve-
locity, the front moves outwards or inwards, which corre-
sponds to convective or absolute instability, respectively.
When the characteristic length needed for the building of
the front is shorter than the system size, the nature of the
instability is in agreement with the theoretical predictions
made for semi-infinite systems. However, our numerical re-
sults show that, if the characteristic building length of the
front is larger than the system size, one will never see in-
ward motion of the front, and, in this case, even above the
absolute instability threshold, the instability is effectively
convective.

We also studied the instability of the subcritical mid-
dle branch of steady states, a problem that had not been
addressed up to now. It may be shown, already at the
level of linear analysis, that this branch, which is ab-
solutely unstable without group velocity, may entirely
become convectively unstable in the presence of group ve-
locities larger than some well-defined critical value. This
result has been confirmed by the numerical analysis of the
evolution of perturbations of steady states on this branch.
The stabilization of such steady states has effectively been
obtained, in deterministic systems, for group velocities in
the predicted range. In stochastic systems, however, these
steady states relax to one of the stable branches, as ex-
pected. Nevertheless, for this relaxation to occur, either
noise strength or system size have to be large enough.
This effect may be of practical importance, for example,
in binary fluid convection, where, besides the fact that the
role of subcriticality is not clearly understood yet [27], the
presence of natural or forced mean flows, or group veloci-
ties, could effectively stabilize otherwise unstable branches
of steady states.
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